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1 Introduction
Let us recall the universal aspect of symmetry re-
duction: a certain part of a symmetrical structure is
represented by a factorstructure without symmetries
on the orbit space. We will deal with the calculus
of variations of one-dimensional integrals that admit
the Lie symmetries. Then some particular cases of
the reduction principle appear in classical mechanics:
the Routh theorem on cyclic variables and the Jacobi-
Maupertuis principle for constant energy systems [7],
[2]. Warning: the symmetry reduction of Hamilto-
nian systems [3], [6] belong to quite different area
of mathematics, namely to the symplectical geome-
try, and should not be confused with the reduction of
variational integrals.

In more details, the classical calculus of variation-
s consists of two ingredients, the variational integral
and the differential constraints (represented by a sys-
tem of differential equations or by a Pfaffian system)
and so we simultaneously deal with two closely relat-
ed reduction problems. Even in the subcase of trivial
constraints (empty differential systems, all jets are ad-
mitted) the factorsystem may be rather involved. For
the convenience of exposition, we begin with the point
symmetries of first order variational integrals in this
Part 1. Then the final result is well known [1] but we
state a much better approach here. After this prepa-
ration, the reduction of higher order and constrained
variational integrals will be quite analogously treat-
ed in subsequent Part 2. Alas, we shall see that the
relatively simple generalization of Routh and Jacobi-
Maupertuis results look as a mere lucky accident – the

reduction of a Lagrange variational problem need not
be a variational problem in the classical setting.

2 The Routh theorem anew
Let us consider the variational integral∫

φ

(φ = f(t, y, z, ẏ, ż)dt, y = y(t), z = z(t), ˙=
d

dt
)

and assume that the variable z is cyclic in the sense
∂f/∂z = 0 hence f = f(t, y, ẏ, ż). Then the second
equation of the Euler-Lagrange system

∂f

∂y
=

d

dt

(
∂f

∂ẏ

)
, 0 =

∂f

∂z
=

d

dt

(
∂f

∂ż

)
,

reads ∂f/∂ż = c (c ∈ R). Assuming the normal case
∂2f/∂ż2 ̸= 0, this can be resolved as ż = g(t, y, ż, c)
by using the implicit function theorem. Let us recall
the Poincaré-Cartan form

φ̆ := fdt+
∂f

∂ẏ
(dy − ẏdt) +

∂f

∂ż
(dz − żdt)

and its restriction

φ̆|ż=g = (f |ż=g − cg) dt+
∂f

∂ẏ
|ż=g(dy − ẏdt) + cdz

= φ̃+ cdz
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to the level set ż = g hence ∂f/∂ż = c (fixed c ∈ R).
Some direct calculation (or a theory bellow, see Lem-
ma 1) implies that this φ̃ again is a Poincaré-Cartan
form but for the variational problem restricted to the
level set. It follows that extremals of the Routh varia-
tional integral∫

φ̃
(
φ̃ := f̃dt, f̃ = f |ż=g − cg

)
regarded on the level set (coordinates t, y, ẏ) are iden-
tical with those extremals of the original integral

∫
φ

which are lying in the given level set. This is the Routh
reduction.

Unlike the common method based on direct intro-
duction of Routh function f̃ and subsequent mechani-
cal calculus, we have just indicated the crucial role of
the Poincaré-Cartan form which will be systematical-
ly developed here.

3 Preliminaries
We limit ourselves to C∞ smooth and local theory in
the (universal for all considerations to follow) infinite-
order jet space M(m) with coordinates

x, wi
r (i = 1, . . . ,m; r = 0, 1, . . .) (1)

equipped moreover with module Ω(m) of contac-
t forms

ω =
∑

airω
i
r (ωi

r = dwi
r −wi

r+1dx, finite sum)

(2)
where coefficients air (and all functions to follow) de-
pend C∞-smoothly on a finite number of coordinates.

Assuming coordinates (1), we will deal only
with x-parametrized curves in M(m). Other curves
need an alternative choice of coordinates and contact
forms related within (rather complicated) intertwining
change on the overlap of coordinate systems. Howev-
er, the module Ω(m) makes the absolute sense.

We recall the total derivative vector field

D :=
∂

∂x
+

m∑
i=1

∞∑
r=1

wi
r+1

∂

∂wi
r

(infinite sum), (3)

and the formula

da =
∂a

∂x
dx+

m∑
i=1

∑
r≥0

∂a

∂wi
r

dwi
r

= Dadx+

m∑
i=1

∑
r≥0

∂a

∂wi
r

ωi
r (4)

valid for all functions a on M(m). This formula and
the equations

Ω(m)(D) = DyΩ(m) = 0, (5)

dωi
r = dx ∧ ωi

r+1, LDω
i
r = ωi

r+1

(the Lie derivative L) will be of frequent use.
We are interested in the first order variational in-

tegral ∫
φ (6)

(φ = f(x,w1
0, . . . , w

m
0 , w

1
1, . . . , w

m
1 )dx, wi

r =
drwi

dxr
)

with the Poincaré-Cartan form

φ̆ := fdx+

m∑
i=1

∂f

∂wi
1

ωi
0. (7)

Clearly dφ̆ ∼
∑
eiωi

0 ∧ dx (mod Ω(m) ∧ Ω(m)).
Here

ei =
∂f

∂wi
0

−D
∂f

∂wi
1

(i = 1, . . . ,m) (8)

are the Euler-Lagrange coefficients. A curve P : I →
M(m) (where I ⊂ R is an interval) satisfying

P∗wi
r+1 =

dP∗wi
r

dP∗x
,

P∗ei = P∗ ∂f

∂wi
0

− dP∗∂f/∂wi
1

dP∗x
= 0 (9)

(i = 1, . . . ,m)

is the classical extremal. In coordinate-free transcrip-
tion, conditions (3) read

P∗Ω(m) = 0, P∗(Xydφ̆) = 0 (all vector fields X).
(10)

Recall that (3) implies the prolongation equations
P∗Drei = 0 (i = 1, . . . ,m; r = 0, 1, . . .) by applying
identities (5) and (10).

Lemma 1. A one-form ψ = adx +
∑
aidwi

0 is
Poincaré-Cartan form of an integral (6) if and only
if dψ ∼ 0 (mod ω1

0, . . . , ω
m
0 ).

Lemma 2. A closed two-form Ψ is differential of
a Poincaré-Cartan form (7) if and only if Ψ ∼ 0
(mod ω1

0, . . . , ω
m
0 ).

Remark 3. Hint for proofs: Clearly ψ = fdx +∑
aiωi

0 (where f := a +
∑
aidwi

1) and Lemma 1
directly follows by applying (5). Moreover Ψ = dγ
by using the Poincaré lemma. Here dγ = Ψ ∼ 0
(dx, dw1

0, . . . , dw
m
0 ) whence γ = dg+ψ (ψ = adx+∑

aidwi
0) again by the Poincaré lemma (with param-

eters x,w1
0, . . . , w

m
0 ). Therefore Ψ = dγ = dψ and

Lemma 2 follows by applying Lemma 1.
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Definition 4. A vector field

Z = z
∂

∂x
+

m∑
i=1

∞∑
r=0

zir
∂

∂wi
r

(infinite sum) (11)

is called generalized infinitesimal symmetry of the
variational integral (6) if

LZΩ(m) ⊂ Ω(m), LZφ ∈ Ω(m) . (12)

In terms of coordinates, we have conditions

zir+1 = Dzir − wi
r+1Dz, Zf + fDz = 0 (13)

for the coefficients z, zir. The second condition in (12)
can be obviously replaced by the requirement LZφ̆ ∈
Ω(m) for the Poincaré-Cartan form.

Theorem 5 (Noether). Let Z be a generalized in-
finitesimal symmetry. Then φ̆(Z) is a conservation
law, i.e. function P∗φ̆(Z) is a constant for every ex-
tremal P.

Proof. We have

0 = P∗LZφ̆ = P∗(Zydφ̆+ dφ̆(Z))

= P∗dφ̆(Z) = dP∗φ̆(Z),

by virtue of (10) and (12).

4 The pointwise symmetry
In accordance with classical setting, we shall deal with
pointwise vector field (11) from now on. Any such
field is defined by the requirement

z = z(x,w1
0, . . . , w

m
0 ), zi0 = zi0(x,w

1
0, . . . , w

m
0 ),

(i = 1, . . . ,m)

for the coefficients. This ensures the existence of (lo-
cal) zeroth-order first integrals

W j =W j(x,w1
0, . . . , w

m
0 ), (j = 0, . . . ,m− 1);

rank

[
∂W j

∂x
,
∂W j

∂wi
0

]
= m (14)

(j = 0, . . . ,m− 1; i = 1, . . . ,m),

where ZW j = 0 (j = 0, . . . ,m − 1) by definition,
and also the existence of a “complementary” function

Wm =Wm(x,w1
0, . . . , w

m
0 ), ZWm = 1 . (15)

The somewhat strange choice of the range of indices
will be soon clarified. One can observe that

rank

[
∂W k

∂x
,
∂W k

∂wi
0

]
= m+ 1 (16)

(k = 0, . . . ,m; i = 1, . . . ,m) .

Let the pointwise vector field (11) be moreover in-
finitesimal symmetry. Then

zir = zir(x,w
1
0, . . . , w

m
0 , . . . , w

1
r , . . . , w

m
r )

(i = 1, . . . ,m; r = 0, 1, . . .)

by virtue of recurrence (13) and there exist higher or-
der first integrals. They can be obtained by the “pro-
longation” as follows. Assuming (13), one can verify
the commutativity

[D , Z] = 0 (17)

(D :=
1

DW
D, where ZW = const,DW ̸= 0)

of vector fields D , Z for every function W mentioned
in (17). It follows that

W i
r := DrW i (i = 1, . . . ,m; r = 1, 2, . . .)

are first integrals of order r. They are not functionally
independent and we will continue with a somewhat
tricky reasoning.

Due to (16), systems of zeroth-order functions are
“equivalent”, symbolically

{x,w1
0, . . . , w

m
0 } ≈ {W 0, . . . ,Wm}

= {W 0
0 , . . . ,W

m
0 }

in the sense that the left-hand functions may be repre-
sented as composed functions of the right-hand func-
tions and conversely. (Alternatively speaking, the
families of all composed functions A(x,w1

0, . . . , w
m
0 )

and B(W 0
0 , . . . ,W

m
0 ) are identical.) On the first-

order level, analogously

{Dx,Dw1
0, . . . ,Dw

m
0 } ≈ {DW 0

0 , . . . ,DW
m
0 }

(modulo zeroth order functions, they are kept fixed for
this moment) and moreover trivially

{w1
1, . . . , w

m
1 } ≈ { 1

DW
,
w1
1

DW
, . . . ,

wm
1

DW
}

= {Dx,Dw1
0, . . . ,Dw

m
0 } .

Altogether

{w1
1, . . . , w

m
1 } ≈ {DW 0

0 , . . . ,DW
m
0 }

= {W 0
1 , . . . ,W

m
1 } .

Continuing in this way, we obtain the equivalence

{w1
r , . . . , w

m
r } ≈ {W 0

r , . . . ,W
m
r } (r = 1, 2, . . .)

modulo lower order functions. (Alternative-
ly speaking, the families of all composed
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functions A(w1
r , . . . , w

m
r ;w1

0, . . . , w
m
r−1) and

B(W 0
r , . . . ,W

m
r ;w1

0, . . . , w
m
r−1) are identical.)

Functions on the right-hand are not functional-
ly independent, of course. Let us permanently chose
W = W 0(= W 0

0 ) in (17) from now on. Then the
right-hand functions W 0

1 = DW 0 = 1, W 0
r =

DW 0
r−1 = 0 (r > 1) may be omitted and therefore

{w1
r , . . . , w

m
r } ≈ {W 1

r , . . . ,W
m
r } (18)

(r = 1, 2, . . .) .

The result can be rephrased as follows.

Lemma 6. Functions

W 0,W i
r = DrW i (19)

(i = 1, . . . ,m; r = 0, 1, . . . ; D :=
1

DW 0
D)

are functionally independent and may be taken for al-
ternative coordinates on M(m). All functions (18)
except Wm =Wm

0 are first integrals.

Proof. The Jacobi matrix of functions (19) is a lower
block-triangular matrix with square blocks

A0 =

[
∂W k

0

∂x
,
∂W k

0

∂wj
0

,

]
, Ar =

[
∂W i

r

∂wj
r

]
(k = 0, . . . ,m; i, j = 1, . . . ,m; r = 1, 2, . . .)

on the diagonal. Then detA0 ̸= 0 due to (16) and
detAr ̸= 0 due to (18).

Corollary 7. In terms of coordinates (19), we have

Z =
∂

∂Wm
0

, D =
∂

∂W 0
+
∑

W i
r+1

∂

∂W i
r

(20)

and contact forms (2) are represented as

ω =
∑

Ai
rΩ

i
r (Ωi

r = dW i
r −W i

r+1dW
0) (21)

where

Ωi
r =

∑(
∂W i

r

∂wj
s

−W i
r+1

∂W 0

∂wj
s

)
ωj
s,

Ai
r =

∑(
∂W i

r

∂wj
s

−W i
r+1

∂W 0

∂wj
s

)
ajs .

We see that W 0 plays the role of the independent
variable here and functions W i

r correspond to origi-
nal coordinates wi

r. We again have a lower-triangular
substitution.

We are passing to the factorobject, namely the or-
bit space. The vector field Z generates a local flow
F t
Z . In more details

d

dt
F t
Z(P ) = Z(F t

Z(P )), F0
Z(P ) = P

(P ∈ U,−ε < t < ε, ε > 0)

where U ⊂ M(m) is an appropriate open subset.
Clearly

F t∗
Z W

0 =W 0, F t∗
Z W

i
r =W i

r (i ̸= m or r ̸= 0),

F t∗
Z W

m
0 =Wm

0 + t,

and therefore F t∗
Z Ωi

r = Ωi
r. Any point (locally) be-

longs to one orbit

FZ(P ) := {F t
Z(P ) : −ε(P ) < t < ε(P )} .

We (locally, on a given U ⊂ M(m)) introduce the
orbit space M(m)orbU . This U will be kept fixed and
systematically omitted for brevity. Then M(m) can be
locally regarded as a fibered space with natural (local)
projection

p : (U ⊂)M(m) → M(m)orb, (22)

p : P 7→ FZ(P ) .

If V is a (local) function on the base space M(m)orb,
then W = p∗V is a first integral and conversely. In
accordance with common convention, we formally i-
dentify W = p∗V : first integrals are simultaneously
regarded as functions on the orbit space.

Corollary 8. Functions

W 0,W j
r = DrW j(j = 1, . . . ,m− 1; r = 0, 1, . . .),

Wm
s = DsWm(s = 1, 2, . . .) (23)

provide coordinates on M(m)orb. The vector field D
is p-projectable and

p∗D =
∂

∂W 0
+

m∑
i=1

∞∑
r=0

W j
r+1

∂

∂W j
r

+
∞∑
s=1

Wm
s+1

∂

∂Wm
s

.

(24)
Contact forms Ωi

r (i ̸= m or r ̸= 0) also make good
sense on M(m)orb.

5 Symmetry of variational integral
The variational integral (6) was not taken into account
as yet. Let us suppose (12) from now on.

Lemma 9. Let Z be a pointwise infinitesimal symme-
try and φ̆ the Poincaré-Cartan form. Then LZφ̆ = 0.
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Proof. In accordance with (12) we put LZφ̆ =∑
airω

i
r. Then

dLZφ̆ ∼
∑

(Dairdx ∧ ωi
r + airdx ∧ ωi

r+1)

(mod Ω(m) ∧ Ω(m))

by applying (3) and (5). On the other hand clearly

LZdφ̆ ∼ LZ

∑
eiωi

0 ∧ dx ∼ 0

(mod ω1
0, . . . , ω

m
0 , Ω(m) ∧ Ω(m)),

in the pointwise case. It follows that air = 0 identical-
ly.

Lemma 10. Functions

Gr+1 = DrG (r = 0, 1, . . . ; G = G1 = φ̆(Z))

are first integrals.

Proof. Clearly

ZG = Zφ̆(Z) = (LZφ̆)(Z) + φ̆([Z,Z]) = 0

by virtue of Lemma 9. Then ZGr+1 = ZDGr =
DZGr = 0 (r = 1, 2, . . .) by induction.

Definition 11. We speak of a normal case if coordi-
nates Wm

s (s = 1, 2, . . .) in the system (19) may be
replaced by functions Gs (s = 1, 2, . . .). In other
words, we suppose that functions

W 0,W j
r = DrW j

(j = 1, . . . ,m− 1; r = 0, 1, . . .), (25)

Wm
0 , Gs (s = 1, 2, . . .)

provide (local) coordinates on M(m).

Lemma 12. The normal case takes place if and only
if

m∑
i=1

m∑
j=1

∂2f

∂wi
1∂w

j
1

(zi0 − wi
1z)(z

j
0 − wj

1z) ̸= 0. (26)

Proof. The Jacobi matrix of the system (11) is low-
er block triangular matrix with the diagonal square
blocks

A0 =

[
∂W k

0

∂x
,
∂W k

0

∂wj
0

]
, Br =

[
∂W i

r

∂wj
r

,
∂Gr

∂wj
r

]
,

(k = 0, . . .,m; i = 1, . . .,m− 1; j = 1, . . .,m).

Here detA0 ̸= 0 and Br differ from Ar in Lemma 6
only in the change Gr ↔ Wm

r . We have detAr ̸= 0

whence rank[∂W i
r/∂w

j
r] = m− 1. One can then see

that

∂W i
r

∂wj
r

=
1

(DW 0)r−1

∂W i
1

∂wj
1

,
∂Gr

∂wj
r

=
1

(DW 0)r−1

∂Gr

∂wj
1

(i, j = 1, . . .m; r = 1, 2, . . .)

whence it is sufficient to prove that detB1 ̸= 0. Using
the explicit formulae

∂W i
1

∂wj
1

=
1

(DW 0)2

(
∂W i

∂wj
0

DW 0 − ∂W 0

∂wj
0

DW i

)
identities∑ ∂W i

1

∂wj
1

(zj0 − wj
1z) = 0 (i = 1, . . .,m− 1)

follows by direct verification. Therefore detB1 ̸= 0
is ensured if and only if∑ ∂G

∂wj
1

(zj0 − wj
1z) ̸= 0 .

However G = φ̆(Z) = fz +
∑
∂f/∂wi

1(z
i
0 − wi

1z),
whence

∂G

∂wj
1

=
∑ ∂2f

∂wi
1∂w

j
1

(zi0 − wi
1z)

and the proof is done.

Corollary 13. Functions

W 0,W j
r = DrW j (j = 1, . . . ,m− 1; r = 0, 1, . . .),

Gs (s = 1, 2, . . .) (27)

provide (local) coordinates on M(m)orb in the normal
case.

6 The restriction to subspaces
Definition 14. Assuming the normal case, we intro-
duce the subspaces M(m, c) ⊂ M(m) defined by
the conditions G = G1 = c (c ∈ R), Gr =
0 (r = 2, 3, . . .). By using the convention Gs = p∗Gs

(s = 1, 2, . . .), we moreover introduce the subspace
M(m, c)orb ⊂ M(M)orb defined by the same condi-
tions. In other words, the subspace M(m, c)orb ⊂
M(m)orb consists of all orbits lying in the subspace
M(m, c) ⊂ M(m).

Functions

W 0,W j
r (j = 1, . . .,m− 1; r = 0, 1, . . .), Wm

(28)
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may be taken for coordinates on M(m, c). Functions

W 0,W j
r (j = 1, . . .,m− 1; r = 0, 1, . . .), (29)

provide coordinates on M(m, c)orb. It follows that
vector fields D,D and Z are tangent to the sub-
space M(m, c) ⊂ M(m), i.e., they may be applied
to the functions defined only on M(m, c). The pro-
jection p∗D is analogously tangent to the subspace
M(m, c)orb ⊂ M(m)orb.

As the contact forms Ωj
r are concerned, they pro-

vide the contact module Ω(m − 1) on the space
M(m, c)orb. Every extremal is locally contained in
a certain subspace M(m, c) ⊂ M(m), however, the
variational problem cannot be restricted to this sub-
space due to the “bad” coordinate Wm. Nevertheless,
restriction to the orbit space M(m, c)orb is reasonable
as follows.

Theorem 15 (Routh). Let a variational integral∫
φ

(φ = f(x,w1
0, . . ., w

m
0 , w

1
1, . . ., w

m
1 )dx,

wi
r :=

drwi
0

dxr
)

admits a pointwise infinitesimal symmetry

Z = z
∂

∂x
+

m∑
i=1

∞∑
r=0

zir
∂

∂wi
r

(z = z(x,w1
0, . . ., w

m
0 ), zi0 = zi0(x,w

1
0, . . ., w

m
0 ))

such that
m∑
i=1

m∑
j=1

∂2f

∂wi
1∂w

j
1

(zi0 − wi
1z)(z

j
0 − wj

1z) ̸= 0.

Let c ∈ R and a function Wm =
Wm(x,w1

0, . . . , w
m
0 ) satisfies ZWm = 1. Then

the variational integral∫
φ̃ (φ̃ = (f − cDWm)dx|G=c), (30)

where

G = fz +

m∑
i=1

∂f

∂wi
1

(zi0 − wi
1z),

may be interpreted as a variational integral on the s-
pace M(m, c)orb. The extremals of the integral

∫
φ̃

are just the natural projections of those extremals of
the primary integral

∫
φ which are lying in the sub-

space M(m, c) ⊂ M(m).

Proposition 16. A certain function F̃ on M(m, c)orb
exists such that

φ̃ ∼ F̃ (W 0,W 1
0 , . . . ,W

m−1
0 ,W 1

1 , . . . ,W
m−1
1 )dW 0

(31)

(mod Ω1
0, . . . ,Ω

m−1
0 )

and therefore the equality
∫
φ̃ =

∫
F̃ dW 0 of the vari-

ational integrals is true.

Proposition 17. Let φ̆ and φ̄ be the Poincaré-Cartan
forms of the variational integrals

∫
φ and

∫
φ̃, respec-

tively. Then

i∗φ̆ = p∗φ̄+ cdWm, i∗dφ̆ = p∗dφ̄, (32)

where i∗ : M(m, c) ⊂ M(m) is the natural inclusion
and p : M(m, c) → M(m, c)orb is the natural projec-
tion.

Proof. The Poincaré-Cartan form (7) expressed in al-
ternative coordinates (19) clearly satisfies

φ̆ = AdW 0 +
∑

AidW i
0, dφ̆ ∼ 0

(mod Ω1
0, . . . ,Ω

m
0 ) .

Applying Lemma 1 it follows that this φ̆ is a Poincaré-
Cartan form again, that is,

φ̆ = FdW 0 +
∑ ∂F

∂W i
1

Ωi
0, (FDW 0 = f),

even when it is expressed in alternative coordinates
(19). It follows that

dφ̆ ∼
∑

EiΩi
0 ∧ dW 0

(Ei =
∂F

∂W i
0

− D
∂F

∂W i
1

; i = 1, . . . ,m) .

Using (20) and (13) in coordinates (19), we have

ZF =
∂F

∂Wm
0

= 0,

G = φ̆(Z) =
∂F

∂Wm
1

, Em|G=c = −Dc = 0 .

Let us consider the restriction

i∗φ̆ = F |G=cdW
0 +

m−1∑ ∂F

∂W i
1

|G=cΩ
i
0

+ c(dWm
0 −Wm

1 |G=cdW
0)

=: φ̃+ cdWm
0 .
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Here

φ̃ := (F − cWm
1 )|G=cdW

0 +

m−1∑ ∂F

∂W i
1

|G=cΩ
i
0

= F̃ dW 0 +

m−1∑ ∂F̃

∂W i
1

Ωi
0

(F̃ := (F − cWm
1 )|G=c)

is a Poincaré-Cartan form. To see it it is sufficient to
apply Lemma 1 to the form φ̆ = φ̃ = p∗φ̃ on the
space M(m, c)orb. Then

F̃ dW 0 ∼ (F − cWm
1 )DW 0dx|G=c

= (f − cDWm)dx|G=c

modulo contact forms which gives (30), we use here
Wm

1 = DWm
0 = DWm/DW 0. Moreover

dφ̄ = i∗dφ̆ ∼
m∑
EiΩi

0|G=c ∧ dW 0

=

m−1∑
Ei|G=cΩ

i
0 ∧ dW 0 (mod Ω(m) ∧ Ω(m))

in term of coordinates (29). The Euler-Lagrange sys-
tem of integrals

∫
φ reads Ei = 0 (i = 1, . . . ,m −

1), Em = DG = 0 (hence G = c) while the
Euler-Lagrange system of the reduced integral

∫
φ̃ is

Ei|G=c = 0 (i = 1, . . . ,m − 1) and therefore it pro-
vides the natural projection of original extremals. The
proof is done.

7 On the abelian symmetry group
We will study the case of a Lie algebra G of pointwise
symmetries. For this aim, let us introduce the vector
fields

Z(k) = z(k)
∂

∂x
+
∑

z(k)ir
∂

∂wi
r

(k = 1, . . . ,K)

(33)

z(k) = z(k)(x,w1
0, . . . , w

m
0 ),

z(k)ir = z(k)ir(w
1
0, . . . , w

m
0 ),

for the generators of the algebra G with identities

[Z(l), Z(k)] =
∑

crlkZ(r) (34)

(l, k = 1, . . . ,K; crlk ∈ R)

We moreover suppose the symmetry requirements

LZ(k)Ω(m) ⊂ Ω(m), LZ(k)φ ∈ Ω(m) (35)

(k = 1, . . . ,K)

Then LZ(k)φ̆ = 0 and, denoting G(k) := φ̆(Z(k)),
clearly

Z(l)G(k) = (LZ(l)φ̆)(Z(k)) + φ̆([Z(l), Z(k)])

=
∑

crlkG(r) . (36)

Therefore functions G(r) are first integrals of vector
fields (33) in the abelian subcase crlk = 0. Let us
suppose crlk = 0 identically from now on. Then there
exist zeroth-order first integrals and “complementary”
functions

W j =W j(x,w1
0, . . ., w

m
0 )

(Z(k)W j = 0; j = 0, . . . ,m−K; k = 1, . . . ,K)

Wm−K+k =Wm−K+k(x,w1
0, . . ., w

m
0 )

(Z(l)Wm−K+k = δkl ; k, l = 1, . . . ,K)

(where δkl = 0 if k ̸= l, δkk = 1) satisfying (16).
Moreover the functions

W i
r = DrW i

(i = 0, . . .,m; r = 1, 2, . . . ;

D := D/DW ; Z(k)W = const(k))

are first integrals of order r for every functionW men-
tioned. They are not functionally independent. Let us
permanently chose W = W 0 from now on. Then
Lemma 6 holds true without any change. Every vec-
tor field Z(k) (k = 1, . . . ,K) generates a local flow
F t
Z(k) and (due to Frobenius theorem) we obtain the

orbit space M(m)orb for the Lie algebra G with K-
dimensional fibers, the orbits of G . Functions

W 0 =W 0
0 , W

j
r = DrW j

(j = 1, . . . ,m−K; r = 0, 1, . . .),

Wm−K+k
s = DsWm−K+k

(k = 1, . . . ,K; s = 1, 2, . . .),

provide (local) coordinates on M(m)orb.

Definition 18. We speak of a normal case if function-
s Wm−K+k

s (k = 1, . . .,K; s = 1, 2, . . .) in the
above coordinate systems may be replaced by func-
tions G(k)s = DsG(k).

Definition 19. Assuming the normal case, we in-
troduce the subspaces M(m, c) ⊂ M(m) (c =
(c(1), . . . , c(K)) ∈ RK) defined by the conditions

G1(k) = G(k) = c(k) (k = 1, . . . ,K),

G(k)r = 0 (r = 2, 3, . . .)

and the subspaces M(m, c)orb ⊂ M(m)orb (c =
(c(1), . . . , c(K)) ∈ RK) formally defined by the same
conditions.
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Functions

W 0,W j
r (j = 1, . . .,m−K; r = 0, 1, . . .),

Wm−K+k (k = 1, . . .,K)

may be taken for coordinates on M(m, c). Functions

W 0,W j
r (j = 1, . . .,m−K; r = 0, 1, . . .),

provide coordinates on M(m, c)orb. Vector fields
D,D and Z(k) (k = 1, . . .,K) are tangent to the
subspace M(m, c) ⊂ M(m) and (the projection of)
D is tangent to the subspace M(m, c)orb ⊂ M(m)orb.
Contact forms Ωj

r (j = 1, . . .,m −K; r = 0, 1, . . .)
make good sense on M(m)orb and generate the con-
tact module Ω(m−K).

Theorem 20 (Routh). Let a variational integral∫
φ (37)

(φ = f(x,w1
0, . . ., w

m
0 , w

1
1, . . ., w

m
1 )dx, wi

r :=
drwi

0

dxr
)

admits an abelian Lie group G of infinitesimal point-
wise symmetries with generators (33) such that

det
[ m∑
i=1

m∑
j=1

∂2f

∂wi
1∂w

j
1

(z(l)i0 − wi
1z(l))×

×(z(k)j0 − wj
1z(k))

]
̸= 0 (38)

(k, l = 1, . . . ,K). Let c = (c(1), . . . , c(K)) ∈
RK and functions Wm−K+k =
Wm−K+k(x,w1

0, . . . , w
m
0 ) satisfy the system

Z(l)Wm−K+k =

{
0 (l ̸= k)

1 (l = k) .
(39)

Then the variational integral∫
φ̃ (40)

(φ̃ := (f −
∑

c(k)DWm−K+k)dx)|G(1)=c(1),...,G(K)=c(K)

may be interpreted as a variational integral on the s-
pace M(m, c)orb. Moreover the extremals of the inte-
gral

∫
φ̃ are just the natural projections of those ex-

tremals of the primary integral (37) which are lying
in the subspace M(m, c) ⊂ M(m).

Proof. The proof closely follows the proof of Theo-
rem 15 and may be omitted.

8 A retrospective and perspectives
We have discussed a very particular reduction prob-
lem, the first order variational integral without differ-
ential constraints. Some special tools, especially the
contact forms ωi

r and Ωi
r, were advantageously em-

ployed in order to simplify the reasoning. Let us there-
fore comment the true conceptual mechanisms of our
procedure, which are latently present.

1. Underlying space. The jet space M(m) equipped
with the contact module Ω(m) and the classical
jet coordinates x,wi

r are well-known. They cor-
respond to the trivial differential constraints, the
jet coordinates are free.

2. Variational integral
∫
φ together with the con-

tact module Ω(m) determines the variational
problem. The first order integrals are thoroughly
investigated in all textbooks.

3. Poincaré-Cartan form φ̆ in the total jet space
M(m) is a classical tool as well.

4. Infinitesimal symmetry Z together with φ̆ imme-
diately gives the conservation law φ̆(Z) = const
and first integrals Gr = Drφ̆(Z). We obtain the
fibration M(m, c) ⊂ M(m) (c ∈ R) with fibers
the level sets. Every extremal is obviously lying
in a certain level set.

5. The pointwise case of Z ensures the existence of
large supply of first integrals and therefore the
existence of alternative coordinates W i

r . All but
Wm = Wm

0 are first integrals of Z and provide
coordinates on the orbit space M(m)orb.

6. The normal case ensures that the natural inclu-
sions i = i(c) : M(m, c) ⊂ M(m) (depending
on c ∈ R) of leaves are correctly related to the
alternative coordinates W i

r . We obtain module
of Pfaffian forms i∗Ω(m) and the variational in-
tegral

∫
i∗φ̆ on M(m, c). Alas the “exceptional”

coordinate Wm = Wm
0 causes some difficulties

since i∗DWm = i∗Wm
1 is not included into the

coordinates on M(m, c) and therefore i∗Ωm
0 can-

not be regarded as a “free” contact form.

7. The Routh correction. It follows that i∗φ̆ is
not a Poincaré-Cartan form on M(m, c), how-
ever, the form di∗φ̆ = i∗dφ̆ is differential of
a certain Poincaré-Cartan form φ̃ given by the
correction (32). (Instead of explicit formula
(32), the existence of correction φ̃ can be proved
in coordinate-free manner by using Lemma 2.)
Moreover this φ̃ is independent of the “poor” co-
ordinate Wm = Wm

0 and therefore make good
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sense on the space M(m, c)orb of orbits con-
tained in the leaf M(m, c).

8. Final result. The primary variational integral
∫
φ

on M(m) is reduced to the integral
∫
φ̃ on the

space M(m, c)orb depending on parameter c ∈
R. The differential constraints remain trivial: the
space M(m, c)orb is equipped with contact forms
Ωi
r = dW i

r −W i
r+1dW

0 (i = 1, . . . ,m−1; r =

0, 1, . . .) where W 0 = W 0
0 stands for the new

independent variable.

We intend to deal with the reduction on the general
Lagrange problems in subsequent Part 2. Then the
previous points will be adjusted as follow.

1. Underlying space. Differential constraints given
by an undetermined system of differential equa-
tions is given. We prefer the internal approach:
the system will be introduced as an infinite Pfaf-
fian system Ω in a space M without any use of jet
theory.

2. Variational integral
∫
φ is given by a one-form

φ on M and together with Ω determine the vari-
ational problem (the Lagrange problem) in a co-
ordinate free manner.

3. Poincaré-Cartan form φ̆ in the space M can be
introduced and this provides the Euler-Lagrange
system without any additional variables ([4]).

4. Infinitesimal symmetry Z determines the conser-
vative law φ̆(Z) = const in the primary under-
lying space M exactly as above.

5. The pointwise case. The existence of many first
integrals of the vector field Z is ensured if Z pre-
serves a finite-dimensional subspace of M ([5]).

At this stage, all necessary technical tools for the sub-
sequent generalized points 6)–8) are available. Alas,
the extremals lying in the leaf M(m, c) ⊂ M(m) anal-
ogous as above cannot be in general identified with all
extremals of a variational problem. Roughly speak-
ing, the Routh reduction of a Lagrange problem need
not be a variational problem in the classical sense.

9 Examples
We conclude with several simple applications of gen-
eral results
Example 9.1 (The multiparameter Routh theorem).
Let us deal with integral (6) that admits infinitesimal
symmetries

Z(k) =
∂

∂wk
0

(k = 1, . . .,K), 1 ≤ K ≤ m− 1 .

It follows that

f = f(x,wK+1
0 , . . ., wm

0 , w
1
1, . . ., w

m
1 )

therefore w1
0, . . ., w

K
0 are “cyclic variables”. We have

the conservation laws

G(k) = φ̆(Z(k)) =
∂f

∂wk
1

= c(k) (k = 1, . . .,K),

moreover the zeroth-order first integrals and “comple-
mentary” functions

W 0 = x, W j = wK+j
0 (j = 1, . . .,m−K),

Wm−K+k = wk
0

(Z(l)Wm−K+k = δkl ; k, l = 1, . . .,K) .

Theorem 20 may be applied. Assuming the normality
det(

∑
∂2f/∂wi

1∂w
j
1) ̸= 0 we have the Routh varia-

tional integral ∫
φ̃(

φ̃ := f −
∑

c(k)wk
1 |G(1)=c(1),...,G(K)=c(K)dx

)
on the space M(m, c)orb. Recall that functions

x, W j
s := DsW j = wK+j

s

(j = 1, . . .,m−K; s = 0, 1, . . .)

provide coordinates on M(m, c)orb. The Routh clas-
sical theorem appears if K = 1.

Example 9.2 (On the Jacobi-Maupertuis principle).
We continue with integral (6) that admits the infinites-
imal symmetry

Z =
∂

∂x
+
∑

ai
∂

∂wi
0

(ai ∈ R) .

We have the conservation law

G = φ̆(Z) = f +
∑ ∂f

∂wi
1

(ai − wi
1) = c,

moreover the zeroth-order first integrals and “comple-
mentary” function

W j := wj+1
0 − aj+1x (j = 0, . . .,m− 1),

Wm := x (ZWm = 1) .

Theorem 15 may be applied if the normality condition∑ ∂2f

∂wi
1∂w

j
1

(ai − wi
1)(a

j − wj
1) ̸= 0
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is satisfied. We obtain the Routh variational integral∫
φ̃ (φ̃ := (f − c)dx|G=c = F̃ dW 0)

on the space M(m, c)orb. Recall that functions

W 0 := w1
0 − a1x,

W i
r := DrW i =

(
D

w1
1 − a1

)r

(wi
0 − aix)

(i = 1, . . .,m− 1)

may be taken as coordinates on M(m, c)orb.
For better clarity, let us directly verify that

∫
φ̃

is indeed defined on the orbitspace. Infinitesimal in-
variance of variational integral is ensured if and only
if

fdx = A(W 0, . . .,Wm−1, w1
1, . . ., w

m
1 )dx

in terms of first integrals. Alternatively, this may be
expressed as

fdx ∼

B(W 0, . . .,Wm−1, w1
1 − a1, . . ., wm

1 − am)
dW 0

DW 0

(DW 0 = w1
1 − a1)

modulo contact forms, briefly

fdx ∼ B(W 0, . . .,Wm−1, t1, . . ., tm)
dW 0

t1

(ti = wi
1 − ai) .

This is restricted to the level set G = c or, explicitly,
we suppose

f − c =
∑ ∂f

∂wi
1

(wi
1 − ai) =

∑ ∂B

∂ti
ti .

It follows that we have a first order homogeneous
function on the level set:

fdx ∼ C(W 0, . . .,Wm−1,
t2

t1
, . . . ,

tm

t1
)dW 0 .

However ti/t1 = DW i/DW 0 = dW i/dW 0 (i =
2, . . . ,m) may be interpreted as the derivative with
respect to the (new) independent variable W 0. Alto-
gether∫
fdx =

∫
F̃ (W 0

0 , . . . ,W
m−1
0 ,W 1

1 , . . . ,W
m
1 )dW 0

(F̃ = C)

in the jet notation and we are done – this is integral on
the orbit space.

In the particular case a1 = · · · = am = 0, f =
T − V with the kinetic energy T and the potential
energy V , we obtain the classical Jacobi-Maupertuis
theorem [1], [2] of reduction to the constant energy
G = H = c (the Hamiltonian function).

Example 9.3 (A non-abelian symmetry group). The
variational integral∫
F (12(x

2+y2+z2), xẋ+yẏ+zż, 12(ẋ
2+ẏ2+ż2) dt

admits the four-dimensional Lie algebra G of point-
wise symmetries generated by vector fields

Z(1) = −z ∂
∂y

+ y
∂

∂z
+ · · · ,

Z(2) = −x ∂
∂z

+ z
∂

∂x
+ · · · ,

Z(3) = −y ∂
∂x

+ x
∂

∂y
+ · · · ,

Z(4) =
∂

∂t
,

namely the Lie algebra of the orthogonal group in the
space x, y, z completed with time shifts. There are
two-dimensional abelian Lie subalgebras of G with
generators

AZ(1) +BZ(2) + CZ(3),

(fixed A,B,C ∈ R; |A|+ |B|+ |C| ̸= 0), Z(4)

that provide a Routh reduction (depending on param-
eters A,B,C) by applying Theorem 20

In order to avoid clumsy formulae, we will men-
tion only the case of the function F = F ((ẋ2 + ẏ2 +
ż2)/2) and the particular case B = C = 0 of the
abelian symmetry subalgebra with abbreviations

Z = Z(1) = −z ∂
∂y

+ y
∂

∂z
− ż

∂

∂ẏ
+ ẏ

∂

∂ż
+ · · ·

T = Z(4) =
∂

∂t
.

Then

φ̆ = Fdt+F ′(ẋ(dx−ẋdt)+ẏ(dy−ẏdt)+ż(dz−żdt))

is the Poincaré-Cartan form and we obtain two con-
servation laws

φ̆(Z) = (yż − zẏ)F ′ = c(1),

φ̆(T ) = F − (ẋ2 + ẏ2 + ż2)F = c(2) (41)
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by applying the Noether theorem. All first integrals of
vector fields Z, T are quite simple: the zeroth order
functions x, y2 + z2 and their prolongations

Drx, Dr(y2 + z2) (r = 0, 1, . . . ;

D = D =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
+ · · · )

and moreover all functions

DrW

(
W = arctan

z

y
; r = 1, 2, . . .

)
as follows from ZW = 1, TW = 0 and the commu-
tativity [D , Z] = [D , T ] = 0. Recall that

Drφ̆(Z), Drφ̆(T ) (r = 0, 1, . . .)

are first integrals, too. If they may be included in-
to coordinates on the orbit space, we have the normal
case. We will not state the (rather clumsy) normality
requirement (20) here. (Roughly speaking, it is satis-
fied on an open dense set for all nonconstant functions
F .)

It follows that Theorem 20 with K = 2 may be
applied. We may choose

Wm−K+1 := arctan
z

y
, Wm−K+2 := t

(m = 3,K = 2)

for the functions (39) and then the form

φ̃ = (F − c(1)D arctan
z

y
− c(2)Dt)dt

=

(
F − c(1)

yż − zẏ

y2 + z2
− c(2)

)
dt

determines the Routh integral (40). Recall that it is
considered on the orbit space, i.e., under the restric-
tion (41).
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[3] É. Cartan, Leçons sur les invariants intégraux.
Hermann, Paris, 1922.

[4] J. Chrastina, The formal Theory of Differential
Equations. Masaryk University, Brno, 1998.
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